HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Genetische Charakterisierung von alten Obstsorten zur Erhaltung der Biodiversität

Dipl.-HTL-Ing. Karin Silhavy-Richter BEd. Abt. Biologie 12. Mai 2022

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Gründe für die Erhaltung alter Obstsorten

- Klimawandel
- Genpool für Züchtung
 Äpfel: Neuzüchtungen der letzten Jahrzehnte fast ausschließlich Nachkommen von Golden Delicious, Cox Orange, Jonathan, McIntosh und Red Delicious Resistenz-Züchtungen gegen Schorf fast ausschließlich mit Malus floribunda
- Oft widerstandsfähiger, da an Standort-Bedingungen angepasst
- Alte Apfelsorten weniger Allergie auslösend
- Kulturelles Erbe

Gründe für die genetische Charakterisierung

- Unabhängig von Sortenausprägung
- Unbeeinflusst von Umweltfaktoren
- Analysen sind (fast) Jahreszeit unabhängig
- Unterstützung für Pomologen und vice versa

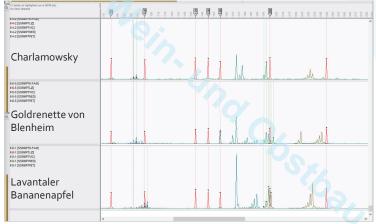
Herkunft	Probe	Sorte	CHo	1f02	CHo	.fo3b	CHo	1h01	СНо	1h10	СНо	2co6	CHo	2009	CHo	2011	CHo3	do7	CHo	4co7	CHo	4e05	СНо	5fo6	GD:	147
	31006-007	AT Gravensteiner	173	177	174	180	122	133	104	112	236	252	247	259	219	241	192	194	108	110	178	205	177	189	142	155
CRA-W	CRAW-0019	Fameuse	173	177	174	180	122	133	104	112	236	254	247	259	219	241	192	194	108	110	178	205	177	189	142	155

AT Gravensteiner


Genetische Charakterisierung von alten Obstsorten

3

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau


Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Genetische Charakterisierung

Mikrosatelliten - Analyse

- Mikrosatelliten = kurze sich wiederholende DNA Abschnitte aus 2 7 Basenpaaren
- DNA-Abschnitte mittels PCR (Polymerase-Kettenreaktion) vervielfältigt
- Genaue Unterscheidung der Fragmentlängen mittels Sequenziergerät ABI 3130

Genetische Charakterisierung von alten Obstsorten

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Mikrosatelliten-Analyse - Limits

- Mehrere Sorten gleiche genetische Profile
 - Zufall oder gleiche Sorte mit verschiedenen Namen?
 - Pomologen zur Unterstützung historisches Wissen notwendig

Acc.Nr.	Herkunft	Sorte	CHo1fo	. CI	Ho1fo	3b	CHoa	ho1 (CH01	h10	CH	lo2co	9	CH	102C1	1	CHoz	do8	CHoz	c07	CHo	4e05	СНо	5f06	GD12	GD1	47	Hic	2007
DCA_L68	UNIBO	Melo Randazzo	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205	181	189	160	140	142	104	116 148
CRAW- 0930	CRA-W	Reinette d'Amérique	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205	181	189	160	140	142	104	116 148
CRAW- 1094	CRA-W	Reinette de Normandie	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205	181	189	160	140	142	104	116 148
1929-032	NFC	Aldenham Blenheim	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205			160		:	104	116 148
1973-133	NFC	Blenheim Orange	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205			160			104	116 148
Qu310-06	Klbg.	Goldrenette von Blenheim	185 18	7 14:	174	182	118	137	94	100	245	247	259	211	219	221	209	258	110	116	178	205	181	189	160	140	142 :	104	116 148
																				<u> </u>									
																													6

Projekte

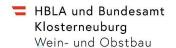
- Genetische Charakterisierung von alten Apfelsorten in der Genbank Kierling
- Erstellung einer Datenbank mit internationalen Datensätzen zum Sortenabgleich
- Ausbau der Obstsortendatenbank www.sortenvielfalt.at
- Genetische Charakterisierung der Apfel, Birnen, Marillen und Prunus domestica Genbanken am Haschhof
- Projekt-Partnerin bei der "Obst-Inventur Österreich. Genetische Charakterisierung unserer Obstsammlungen" von ARCHE NOAH, gefördert über den Biodiversitätsfond des Bundesministeriums für Klimaschutz, Umwelt, Energie. Mobilität, Innovation und Technologie www.arche-noah.at/sortenerhaltung/obst-und-obstsammlung/obst-inventur-oesterreich

Genetische Charakterisierung von alten Obstsorten

7

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus


Projekt: Genetische Charakterisierung von alten Apfelsorten in der Genbank Kierling

- Streuobstanlage
- Pflanzjahr 1997
- Sämlingsunterlagen

Verwendete Marker-Sets für die Apfel-Charakterisierung

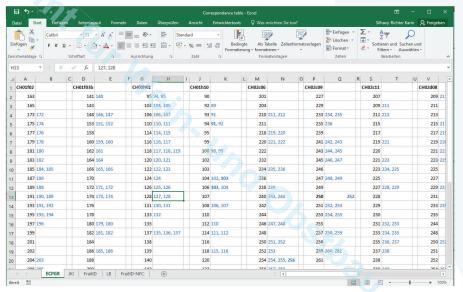
- 4 Sets nach Empfehlung von ECPGR (European Cooperative Programme for Plant Genetic Ressources) mit je 4 unterschiedlichen Genorten: CHo1fo2, CHo1fo3b, CHo1ho1, CHo1h1o, CHo2co6, CHo2co9, CHo2c11, CHo2do8, CHo3do7, CHo4co7, CHo4eo5, CHo5fo6, (LIEBHARD et al., 2002), CH-Vf1 (VINATZER et al., 2004), GD12, GD147 (HOKANSON et al., 1998), Hio2co7 (SILFVERBERG-DILWORTH et al., 2006)
- 2 Sets zur Ergänzung, mit den vom Versuchszentrum Laimburg verwendeten Markern: CHo1co6, CHo1do8, CHo1fo7a, Cho2b1o, CHo2co2a, Cho2d12, CHo2h11a, CHo3ao4 (LIEBHARD et al., 2002), COL (GIANFRANCESCHI et al., 1998)
- 1 ergänzendes Set: CHo1bo7, Cho1b11, CHo4co6 (LIEBHARD et al., 2002)
- Insgesamt wurden 28 Genorte untersucht

Genetische Charakterisierung von alten Obstsorten

C

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus


Verwendete internationale Datenbanken für die Überprüfung der erhaltenen genetischen Profile

- Daten des Versuchszentrum Laimburg aus der Arbeit von Baric et al. (2020),
 Molecular Genetic Identification of Apple Cultivars Based on Microsatellite DNA Analysis. I. The Database of 600 Validated Profiles (I)
- Daten aus der Arbeit von Urrestarazu et al. (2016), Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level (EU)
- Daten aus der Arbeit von Larsen et al.(2017), Unravelling genetic diversity and cultivar parentage in the Danish apple gene bank collection (DK)
- Daten von Fruit-ID, großteils Daten der National Fruit Collection (UK)
- Daten vom Bundesamt f

 ür Landwirtschaft BLW (CH)
- Datenaustausch mit dem Julius-Kühn-Institut in Dresden (D)

Abgleich mit anderen Datenbanken

Erstellung von Entsprechungstabellen ("correspondance table")

Genetische Charakterisierung von alten Obstsorten

11

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Abgleich mit anderen Datenbanken

Herkunft	Sorte	tatsächliche Sorte	CH01ft)2		CH01f0)3b	CH01h	01		CH01h	10	CH02c	06	CH020	09	(CHO2c	11	CH02d	108		CH03d	07
	Apfel aus Croncels		185	204		174	180	120	137		100	137	210	252	241	259		219	233	258			208	220
	Apfel aus Croncels		185	204		174	180	120	137		100	137			241	259		219	233	258			208	220
INRA	Transparente de Croncels		185	204		174	180	120	137		100	137	210	254	241	259		219	233	258			208	220
	Charlamovsky		175	204		148	174	118	120		100	137	210	256	241			219	241	258			188	220
	Charlamovsky		175	204		148	174	116	120		100	137	210	256	241			219	241	258			188	220
SLU	Charlamovsky		175	204		148	174	118	120		100	137	210	256	241			219	241	258			188	220
	Fraas Sommerkalvill		173	187	5	162	185	116	135		100	104	210	242				219	221	233	250		188	228
	Fraas Sommerkalvill		173	187		162	185	116	135		100	104	210	242	257	259		219	221	233	250		188	228
СН	Sommerzitrone	v DE	173	187		162	185	135	135		100	104			257	259							188	230
	James Grieve		208	210		162		124	126		100		242	254	235	251		221	241	233	258		194	220
	James Grieve					162		124	126		100		242	254	235	251		221	241	233	258		194	220
INRA	James Grieve		208	210		162		124	126		100		242	254	235	251		221	241	233	258		194	220
	Cellini		183	193		182		120	137		100	104	246	256	241	259		221	227	221	254		188	208
	Cellini		183	193		182		120	137		100	104	246	256	241	259		221	227	221	254		188	208
NFC-Read.	Cellini		183	193		182		120	137		100	104	246	256	241	259		221	227	221	254		188	208
	Cox Orange	Orbai alma	173	193	210	162	174	114	126	137	94	100			241	257		219	227	215	229	258	206	228
	Cox Orange	Orbai alma	173	193	210	162	174	114	126	137	94	100			241	257		219	227	215	229	258	206	228
NFC-Read.	Orbai Alma	<u> </u>	173	193	208	162	174	114	126	137	94	100			241	255	257	219	227	215	229	258		
	Deans Küchenapfel	Landsberger Renette	187	193							94	104			241	247		231	233					
	Deans Küchenapfel	Landsberger Renette	187	193		162	182	120	137		94	104	242	256	241	247		231	233	221	258		188	228
RBIPH	Landsberská reneta		187	193		162	182	120	137		94	104	242	256	241	247		231	233	221	258		188	228
310	Geflammter Kardinal	Cox Orange	208	210		162	185	124	137		100		242	40	235	259		221		256	258		220	
310	Geflammter Kardinal	Cox Orange	208	210		162		124	137		100		242		235	259		221		256	258		220	
RBIPH	Cox Orange Pipin		208	210		162		124	137		100		242		235	259		221		258			220	

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Abgleich mit anderen Datenbanken

Herkunft	Sorte	CH01c0	101c06		CH01d	08	CH01f0	2	CH01h	01	CH02b	10	CH02c0	9	CH02c1	11	CH02d08		CH02h	11a
	Klarapfel, Weißer	156	162		240	254	182	188	116	118	133	155	247	251	220	226	218	228	98	100
	Klarapfel, Weißer	156	162		240	254	182	188	116	118	133	155	247	251	220	226	218	228	98	100
LB	Weißer Klarapfel	156	162		240	254	182	188	116	118	133	155	247	251	220	226	218	228	98	100
	Stark Earliest	156	162		240	248	170	188	124				245	259	220	230	214	228	98	122
	Stark Earliest	156	162		240	248	170	188	124	126			245	259	220	230	214	228	98	122
LB	Stark Earliest	156	162		240	250	170	188	124		123	155	245	259	220	230	214	228	98	122
	Aldingers George Cave	156	172		240	272	184	208	120	134	131	137	235	259	222	226	254	256	98	
	Aldingers George Cave	156	172		240	272	184	208	120	134	131	137	235	259	222	226	254	256	98	
LB	George Cave	156	172		240	272	184	208	120	134	131	137	235	259	222	226	254	256	98	
	Apfel aus Croncels	156	186		240	248	182	202	118	134	113	133	241	259	218	232	258		100	122
	Apfel aus Croncels	156	186		240	248	182	202	118	134	113	133	241	259	218	232	258		100	122
LB	Transparent aus Croncels	156	188		240	250	182	202	118	134	113	133	241	259	218	232	258		100	122
	Charlamovsky	156	164		240	254	172	202	116	118	113	121	241		218	240	258		100	114
	Charlamovsky	156	164		240	254	172	202	114	118	113	121	241		218	240	258		100	114
LB	Charlamowsky	156	164		240	254	172	202	116	118	113	121	241		218	240	258		100	114
	James Grieve	160	162		240	256	206	208	122	124			235	251	220	240	232	258	98	100
	James Grieve	160	162		240	256			122	124	131	133	235	251	220	240	232	258	98	100
LB	James Grieve	160	162		240	256	206	208	122	124	131	133	235	251	220	240	232	258	98	100
	Cellini	154	162		254	272	180	190	118	134			241	259	220	226	220	254	114	116
	Cellini	154	162		254	272	180	190	118	134	123	143	241	259	220	226	220	254	114	116
LB	Cellini	154	162		254	272	180	190	118	134	123	143	241	259	220	226	220	254	114	116

Genetische Charakterisierung von alten Obstsorten

13

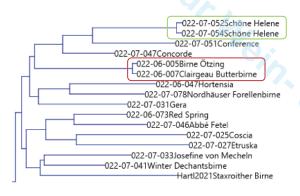
HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

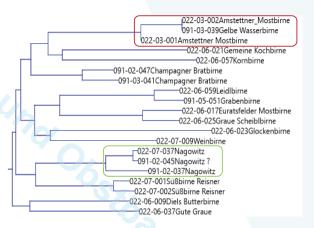
Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Ergebnisse

- 208 analysierte Bäume 96 Sorten
- 2 "neue" Sorten: Apfel von Orba und Amerikanischer Schneeapfel
- Rumer Gravensteiner = Landsberger Renette x Schmidberger Renette
- mehrere Sorten pomologisch zu klären bzw. zu überprüfen

Apfel von Orba (Orbai alma)

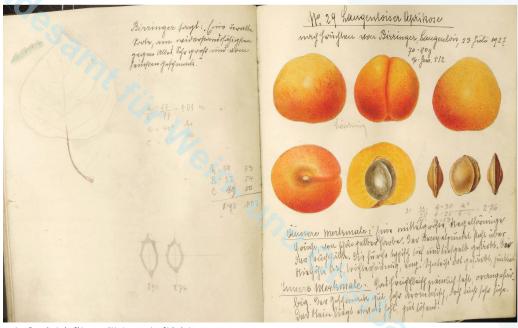

Amerikanischer Schneeapfel (Fameuse)



Rumer Gravensteiner

Erste Erkenntnisse beim Birnen-Projekt

- Mostbirnenvielfalt sehr hoch schwierig zu vergleichen
- Birnen gleicher Sorte weisen teilweise genetische Unterschiede auf


Genetische Charakterisierung von alten Obstsorten

15

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Abgleich mit Literatur und Beschreibungen von Löschnig & Co

Aus: Pomologische Skizzen und Notizen von Josef Löschnig

Genetische Charakterisierung von alten Obstsorten

17

HBLA und Bundesamt Klosterneuburg Wein- und Obstbau

Eine Einrichtung des Bundesministeriums für Landwirtschaft, Regionen und Tourismus

Zusammenfassung

- Erfassung der genetischen Profile und Aufbau einer Datenbank
- Erfassung der biologischen Vielfalt
- Ziel: Gewährleistung sortenechter Erhaltung um auch für die Zukunft genügend genetische Ressourcen zur Verfügung zu haben

"Altes bewahren und schützen um es auch in Zukunft zu nützen!"

─ HBLA und Bundesamt Klosterneuburg
Wein- und Obstbau

Danke für Ihre Aufmerksamkeit!

Dipl.-HTL-Ing. Karin Silhavy-Richter BEd. Abt. Biologie <u>karin.silhavy@</u>weinobst.at